Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available May 8, 2026
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            Abstract We show that the universal theory of the hyperfinite II$$_1$$factor is not computable. The proof uses the recent result that MIP*=RE. Combined with an earlier observation of the authors, this yields a proof that the Connes Embedding Problem has a negative solution that avoids the equivalences with Kirchberg’s QWEP Conjecture and Tsirelson’s Problem.more » « less
- 
            We introduce the notion of a Tsirelson pair of C*-algebras, which is a pair of C*-algebras for which the space of quantum strategies obtained by using states on the minimal tensor product of the pair is dense in the space of quantum strategies obtained by using states on the maximal tensor product. We exhibit a number of examples of such pairs that are “nontrivial” in the sense that the minimal tensor product and the maximal tensor product of the pair are not isomorphic. For example, we prove that any pair containing a C*-algebra with Kirchberg’s QWEP property is a Tsirelson pair. We then introduce the notion of a C*-algebra with the Tsirelson property (TP) and establish a number of closure properties for this class. We also show that the class of C*-algebras with the TP forms an elementary class (in the sense of model theory), but that this class does not admit an effective axiomatization.more » « less
- 
            We introduce and study Polish topologies on various spaces of countable enumerated groups, where an enumerated group is simply a group whose underlying set is the set of natural numbers. Using elementary tools and well-known examples from combinatorial group theory, combined with the Baire category theorem, we obtain a plethora of results demonstrating that several phenomena in group theory are generic. In effect, we provide a new topological framework for the analysis of various well known problems in group theory. We also provide a connection between genericity in these spaces, the word problem for finitely generated groups and model-theoretic forcing. Using these connections, we investigate a natural question raised by Osin: when does a certain space of enumerated groups contain a comeager isomorphism class? We obtain a sufficient condition that allows us to answer Osin’s question in the negative for the space of all enumerated groups and the space of left orderable enumerated groups. We document several open questions in connection with these considerations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
